Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $(-3,1) $ and has eccentricity $\sqrt {\frac{2}{5}} $ is
$5{x^2} + 3{y^2} - 48 = 0$
$\;3{x^2} + 5{y^2} - 15 = 0$
$\;5{x^2} + 3{y^2} - 32 = 0$
$\;3{x^2} + 5{y^2} - 32 = 0$
An ellipse has $OB$ as semi minor axis, $F$ and $F'$ its foci and the angle $FBF'$ is a right angle. Then the eccentricity of the ellipse is
The position of the point $(1, 3)$ with respect to the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$
An ellipse is drawn with major and minor axes of lengths $10 $ and $8$ respectively. Using one focus as centre, a circle is drawn that is tangent to the ellipse, with no part of the circle being outside the ellipse. The radius of the circle is
The the circle passing through the foci of the $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ and having centre at $(0,3) $ is
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :